Hukum Hooke dan Elastisitas
In Elastisitas
Pengantar
Pernakah dirimu melihat alat yang tampak pada gambar ini ? wah, hari gini belum itu adalah gambar pegas. Nyamannya kehidupan kita tidak terlepas dari bantuan pegas, walaupun kadang tidak kita sadari. Ketika dirimu mengendarai sepeda motor atau berada dalam sebuah mobil yang sedang bergerak di jalan yang permukaannya tidak rata alias jalan berlubang, pegas membantu meredam kejutan sehingga dirimu merasa sangat nyaman berada dalam mobil atau ketika berada di atas sepeda motor. Apabila setiap kendaraan yang anda tumpangi tidak memiliki pegas, gurumuda yakin perjalanan anda akan sangat melelahkan, apalagi ketika menempuh perjalanan yang jauh. Ketika turun dari mobil langsung meringis kesakitan karena terserang encok dan pegal linu pegas tidak hanya dimanfaatkan di mobil atau sepeda motor, tetapi pada semua kendaraan yang selalu kita gunakan. Selengkapnya akan kita kupas tuntas pada akhir tulisan ini. Pegas merupakan salah satu contoh benda elastis. Contoh benda elastis lainnya adalah karet mainan
(kalo karet pasti tahu ). Btw, elastis itu apa ya ? terus apa hubungan antara elastis dan hukum Hooke ? Nah, sekarang bersiap-siaplah untuk melakukan pertempuran dengan ilmu fisika. Siapkanlah amunisi sebanyak-banyaknya; sapu tangan atau tisu untuk ngelap keringat, obak sakit kepala dkk… Selamat belajar ya, semoga dirimu memenangi pertempuran ini
ELASTISITAS
Ketika dirimu menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. silahkan dicoba kalau tidak percaya. Jika tarikanmu dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika dirimu merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Apabila di laboratorium sekolah anda terdapat pegas, silahkan melakukan pembuktian ini. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena benda-benda tersebut memiliki sifat elastis. Elastis atau elastsisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.
Perlu anda ketahui bahwa gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas. Batas elastis itu apa ? lalu bagaimana kita bisa mengetahui hubungan antara besarnya gaya yang diberikan dan perubahan panjang minimum sebuah benda elastis agar benda tersebut bisa kembali ke bentuk semula ? untuk menjawab pertanyaan ini, mari kita berkenalan dengan paman Hooke.
HUKUM HOOKE
Hukum Hooke pada Pegas
Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.
< ![endif]-->
Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).
< ![endif]-->
Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).
Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :
< ![endif]-->
Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.
Hukum Hooke untuk benda non Pegas
Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.
< ![endif]-->
Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)
Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :
< ![endif]-->
Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.
Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.
Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.
Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :
< ![endif]-->
Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.
< ![endif]-->
Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …
< ![endif]-->
< ![endif]-->
Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah
Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).
Tegangan
Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :
< ![endif]-->
Satuan tegangan adalah N/m2 (Newton per meter kuadrat)
Regangan
Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :
< ![endif]-->
Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).
Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :
< ![endif]-->
< ![endif]-->
Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.
Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat
< ![endif]-->
In Elastisitas
Pengantar
Pernakah dirimu melihat alat yang tampak pada gambar ini ? wah, hari gini belum itu adalah gambar pegas. Nyamannya kehidupan kita tidak terlepas dari bantuan pegas, walaupun kadang tidak kita sadari. Ketika dirimu mengendarai sepeda motor atau berada dalam sebuah mobil yang sedang bergerak di jalan yang permukaannya tidak rata alias jalan berlubang, pegas membantu meredam kejutan sehingga dirimu merasa sangat nyaman berada dalam mobil atau ketika berada di atas sepeda motor. Apabila setiap kendaraan yang anda tumpangi tidak memiliki pegas, gurumuda yakin perjalanan anda akan sangat melelahkan, apalagi ketika menempuh perjalanan yang jauh. Ketika turun dari mobil langsung meringis kesakitan karena terserang encok dan pegal linu pegas tidak hanya dimanfaatkan di mobil atau sepeda motor, tetapi pada semua kendaraan yang selalu kita gunakan. Selengkapnya akan kita kupas tuntas pada akhir tulisan ini. Pegas merupakan salah satu contoh benda elastis. Contoh benda elastis lainnya adalah karet mainan
(kalo karet pasti tahu ). Btw, elastis itu apa ya ? terus apa hubungan antara elastis dan hukum Hooke ? Nah, sekarang bersiap-siaplah untuk melakukan pertempuran dengan ilmu fisika. Siapkanlah amunisi sebanyak-banyaknya; sapu tangan atau tisu untuk ngelap keringat, obak sakit kepala dkk… Selamat belajar ya, semoga dirimu memenangi pertempuran ini
ELASTISITAS
Ketika dirimu menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. silahkan dicoba kalau tidak percaya. Jika tarikanmu dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika dirimu merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Apabila di laboratorium sekolah anda terdapat pegas, silahkan melakukan pembuktian ini. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena benda-benda tersebut memiliki sifat elastis. Elastis atau elastsisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.
Perlu anda ketahui bahwa gaya yang diberikan juga memiliki batas-batas tertentu. Sebuah karet bisa putus jika gaya tarik yang diberikan sangat besar, melawati batas elastisitasnya. Demikian juga sebuah pegas tidak akan kembali ke bentuk semula jika diregangkan dengan gaya yang sangat besar. Jadi benda-benda elastis tersebut memiliki batas elastisitas. Batas elastis itu apa ? lalu bagaimana kita bisa mengetahui hubungan antara besarnya gaya yang diberikan dan perubahan panjang minimum sebuah benda elastis agar benda tersebut bisa kembali ke bentuk semula ? untuk menjawab pertanyaan ini, mari kita berkenalan dengan paman Hooke.
HUKUM HOOKE
Hukum Hooke pada Pegas
Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.
< ![endif]-->
Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).
< ![endif]-->
Sebaliknya, jika benda ditarik ke kiri sejauh -x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).
Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :
< ![endif]-->
Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum ini dicetuskan oleh paman Robert Hooke (1635-1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.
Hukum Hooke untuk benda non Pegas
Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas-batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.
< ![endif]-->
Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L)
Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :
< ![endif]-->
Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban.
Besarnya gaya yang diberikan pada benda memiliki batas-batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.
Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah.
Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula-mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :
< ![endif]-->
Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula-mula (Lo) dan berbanding terbalik dengan luas penampang (A). Kalau dirimu bingung dengan panjang mula-mula atau luas penampang, coba amati gambar di bawah ini terlebih dahulu.
< ![endif]-->
Dah paham panjang mula-mula (Lo) dan luas penampang (A) ?... Lanjut ya …
< ![endif]-->
< ![endif]-->
Besar E bergantung pada benda (E merupakan sifat benda). Secara matematis akan kita turunkan nanti… tuh di bawah
Pada persamaan ini tampak bahwa pertambahan panjang (delta L) sebanding dengan hasil kali panjang benda mula-mula (Lo) dan Gaya per satuan Luas (F/A).
Tegangan
Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :
< ![endif]-->
Satuan tegangan adalah N/m2 (Newton per meter kuadrat)
Regangan
Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :
< ![endif]-->
Karena L sama-sama merupakan dimensi panjang, maka regangan tidak mempunyai satuan (regangan tidak mempunyai dimensi).
Regangan merupakan ukuran perubahan bentuk benda dan merupakan tanggapan yang diberikan oleh benda terhadap tegangan yang diberikan. Jika hubungan antara tegangan dan regangan dirumuskan secara matematis, maka akan diperoleh persamaan berikut :
< ![endif]-->
< ![endif]-->
Ini adalah persamaan matematis dari Modulus Elastis (E) alias modulus Young (Y). Jadi modulus elastis sebanding dengan Tegangan dan berbanding terbalik Regangan.
Di bawah ini adalah daftar modulus elastis dari berbagai jenis benda padat
< ![endif]-->
Usaha dan energi
Tuesday Oct 7,2008 12:45 PM
By san
In Usaha dan Energi
Pengantar
Dalam kehidupan sehari-hari dirimu pasti sering mendengar atau menggunakan kata “usaha” dan “energi”. Kata “usaha” yang sering kita gunakan dalam kehidupan sehari-hari memiliki makna yang berbeda dengan pengertian usaha dalam fisika. Pada kesempitan ini kita akan belajar pokok bahasan usaha dan energi. Pokok bahasan Usaha dan Energi yang telah anda pelajari di SMP masih bersifat kualitatif dan mungkin sekarang dirimu sudah melupakan semuanya . Oleh karena itu gurumuda mencoba membantu dirimu memahami kembali (syukur kalo masih diingat) konsep Usaha dan Energi secara lebih mendalam dan tentu saja disertai juga dengan penjelasan kuantitatif (ada rumusnya). Akhirnya, semoga dirimu tidak berkecil hati, apalagi sampai kecewa dan putus asa karena ada rumus. Pahamilah dengan baik dan benar konsep Usaha dan Energi yang dijelaskan, maka dirimu tidak akan meringis ketika menatap rumus… selamat belajar ya, semoga sukses sampai di tujuan
Pada pokok bahasan fisika sebelumnya, kita telah belajar tentang gerak benda dan hubungannya dengan Gaya yang mempengaruhi gerak benda (Hukum Newton tentang Gerak). Kali ini kita menganalisis gerak benda dalam kaitannya dengan Usaha dan Energi. Usaha dan Energi merupakan besaran skalar sehingga analisis kita menjadi lebih mudah dibandingkan dengan ketika kita mempelajari gaya. Konsep usaha dan energi sangat penting, sehingga sangat dianjurkan supaya dipelajari dengan penuh semangat.
USAHA
Usaha alias Kerja yang dilambangkan dengan huruf W (Work-bahasa inggris), digambarkan sebagai sesuatu yang dihasilkan oleh Gaya (F) ketika Gaya bekerja pada benda hingga benda bergerak dalam jarak tertentu. Hal yang paling sederhana adalah apabila Gaya (F) bernilai konstan (baik besar maupun arahnya) dan benda yang dikenai Gaya bergerak pada lintasan lurus dan searah dengan arah Gaya tersebut.
Secara matematis, usaha yang dilakukan oleh gaya yang konstan didefinisikan sebagai hasil kali perpindahan dengan gaya yang searah dengan perpindahan.
< ![endif]-->
Persamaan matematisnya adalah :
W = Fs cos 0 = Fs (1) = Fs
W adalah usaha alias kerja, F adalah besar gaya yang searah dengan perpindahan dan s adalah besar perpindahan.
Apabila gaya konstan tidak searah dengan perpindahan, sebagaimana tampak pada gambar di bawah, maka usaha yang dilakukan oleh gaya pada benda didefinisikan sebagai perkalian antara perpindahan dengan komponen gaya yang searah dengan perpindahan. Komponen gaya yang searah dengan perpindahan adalah F cos < ![endif]--> teta
Secara matematis dirumuskan sebagai berikut :
Hasil perkalian antara besar gaya (F) dan besar perpindahan (s)
di atas merupakan bentuk perkalian titik atau perkalian skalar.
Karenanya usaha masuk dalam kategori besaran skalar. Pelajari lagi
perkalian vektor dan skalar kalau dirimu bingun… Persamaan di atas
bisa ditulis dalam bentuk seperti ini :
Satuan Usaha dalam Sistem Internasional
(SI) adalah newton-meter. Satuan newton-meter juga biasa disebut Joule
( 1 Joule = 1 N.m). menggunakan sistem CGS (Centimeter Gram Sekon),
satuan usaha disebut erg. 1 erg = 1 dyne.cm. Dalam sistem British,
usaha diukur dalam foot-pound (kaki-pon). 1 Joule = 107 erg = 0,7376 ft.lb.
Perlu anda pahami dengan baik bahwa
sebuah gaya melakukan usaha apabila benda yang dikenai gaya mengalami
perpindahan. Jika benda tidak berpindah tempat maka gaya tidak
melakukan usaha. Agar memudahkan pemahaman anda, bayangkanlah anda
sedang menenteng buku sambil diam di tempat. Walaupun anda memberikan
gaya pada buku tersebut, sebenarnya anda tidak melakukan usaha karena
buku tidak melakukan perpindahan. Ketika anda menenteng atau menjinjing
buku sambil berjalan lurus ke depan, ke belakang atau ke samping, anda
juga tidak melakukan usaha pada buku. Pada saat menenteng buku atau
menjinjing tas, arah gaya yang diberikan ke atas, tegak lurus dengan
arah perpindahan. Karena tegak lurus maka sudut yang dibentuk adalah 90o. Cos 90o
= 0, karenanya berdasarkan persamaan di atas, nilai usaha sama dengan
nol. Contoh lain adalah ketika dirimu mendorong tembok sampai puyeng…
jika tembok tidak berpindah tempat maka walaupun anda mendorong sampai
banjir keringat, anda tidak melakukan usaha. Kita dapat menyimpulkan
bahwa sebuah gaya tidak melakukan usaha apabila gaya tidak menghasilkan
perpindahan dan arah gaya tegak lurus dengan arah perpindahan.
Contoh Soal 1 :
Sebuah peti kemas bermassa 50 kg yang
terletak pada lantai ditarik horisontal sejauh 2 meter dengan gaya 100
N oleh seorang buruh pelabuhan. Lantai tersebut agak kasar sehingga
gaya gesekan yang diberikan pada karung beras sebesar 50 N. Hitunglah
usaha total yang dilakukan terhadap karung berisi beras tersebut…
Panduan jawaban :
Sebelum menghitung usaha total,
terlebih dahulu kita hitung usaha yang dilakukan oleh buruh karung dan
usaha yang dilakukan oleh gaya gesekan. Kita tetapkan arah kanan
bertanda positif sedangkan arah kiri negatif. (b = buruh, Fg = gaya gesekan, N = gaya normal, w = berat). Gaya gesekan berlawanan arah dengan arah gerakan benda sehingga bertanda negatif.
Pada soal di atas, terdapat empat gaya
yang bekerja pada peti kemas, yakni gaya tarik buruh (searah dengan
perpindahan peti kemas), gaya gesekan (berlawanan arah dengan
perpindahan peti), gaya berat dan gaya normal (tegak lurus arah
perpindahan, sudut yang terbentuk adalah 90o).
Untuk mengetahui usaha total, terlebih dahulu kita hitung besar usaha yang dilakukan masing-masing gaya tersebut.
Usaha yang dilakukan oleh buruh pelabuhan :
Wb = Fb.s = (100 N) (2 m) = 200 N.m
Usaha yang dilakukan oleh Gaya gesekan :
Wg = Fg.s =- (50 N) (2 m) = -100 N.m
Usaha yang dilakukan oleh gaya berat :
Ww = Fw.s = (mg) (2 m) cos 90o = 0
Usaha yang dilakukan oleh gaya normal :
WN = FN.s = (mg) (2 m) cos 90o = 0
Usaha total = Wb + Wg + Ww + WN = (200 N.m) + (-100 N.m) + 0 + 0 = 100 N.m = 100 Joule
Contoh Soal 2 :
Seorang anak menarik mobil mainan menggunakan tali dengan gaya sebesar 20 N. Tali tersebut membentuk sudut 30o
terhadap permukaan tanah dan besar gaya gesekan tanah dengan roda mobil
mainan adalah 2 N. Jika mobil mainan berpindah sejauh 10 meter,
berapakah usaha yang dilakukan anak tersebut ?
Panduan jawaban :
Pada dasarnya soal ini sama dengan
contoh soal 1. Pada soal ini terdapat sudut yang dibentuk antara gaya
dengan arah horisontal, sehingga komponen gaya tarik yang dipakai
adalah F cos teta (sejajar dengan arah perpindahan)
Untuk mengetahui usaha total, terlebih
dahulu kita hitung besar usaha yang dilakukan masing-masing gaya : (A =
anak, g = gesekan, w = berat dan N = normal)
Usaha yang dilakukan oleh Gaya gesekan :
Wg = Fg.s = (-2 N) (10 m) = -20 N.m
Usaha yang dilakukan oleh gaya berat :
Ww = Fw.s = (mg) (2 m) cos 90o = 0
Usaha yang dilakukan oleh gaya normal :
WN = FN.s = (mg) (2 m) cos 90o = 0
Usaha total :
ENERGI
Normal 0 MicrosoftInternetExplorer4
Segala sesuatu yang kita lakukan dalam
kehidupan sehari-hari membutuhkan energi. Untuk bertahan hidup kita
membutuhkan energi yang diperoleh dari makanan. Setiap kendaraan
membutuhkan energi untuk bergerak dan energi itu diperoleh dari bahan
bakar. Hewan juga membutuhkan energi untuk hidup, sebagaimana manusia
dan tumbuhan.
Energi merupakan salah satu konsep yang
paling penting dalam fisika. Konsep yang sangat erat kaitannya dengan
usaha adalah konsep energi. Secara sederhana, energi merupakan
kemampuan melakukan usaha. Definisi yang sederhana ini sebenarnya
kurang tepat atau kurang valid untuk beberapa jenis energi (misalnya
energi panas atau energi cahaya tidak dapat melakukan kerja). Definisi
tersebut hanya bersifat umum. Secara umum, tanpa energi kita tidak
dapat melakukan kerja. Sebagai contoh, jika kita mendorong sepeda motor
yang mogok, usaha alias kerja yang kita lakukan menggerakan sepeda
motor tersebut. Pada saat yang sama, energi kimia dalam tubuh kita
menjadi berkurang, karena sebagian energi kimia dalam tubuh berubah
menjadi energi kinetik
sepeda motor. Usaha dilakukan ketika energi dipindahkan dari satu benda
ke benda lain. Contoh ini juga menjelaskan salah satu konsep penting
dalam sains, yakni kekekalan energi. Jumlah total energi pada sistem
dan lingkungan bersifat kekal alias tetap. Energi tidak pernah hilang,
tetapi hanya dapat berubah bentuk dari satu bentuk energi menjadi
bentuk energi lain. Mengenai Hukum Kekekalan Energi akan kita kupas
tuntas dalam pokok bahasan tersendiri. (tuh ada linknya di bawah)…..
Dalam kehidupan sehari-hari terdapat
banyak jenis energi. Energi kimia pada bahan bakar membantu kita
menggerakan kendaraan, demikian juga energi kimia pada makanan membantu
makhluk hidup bertahan hidup dan melakukan kerja. Dengan adanya energi
listrik, kita bisa menonton TV atau menyalakan komputer sehingga bisa
bermain game sepuasnya. Ini hanya beberapa contoh dari sekian banyak
jenis energi dalam
kehidupan kita. Misalnya ketika kita menyalakan lampu neon, energi
listrik berubah menjadi energi cahaya. Energi listrik juga bisa berubah
menjadi energi panas (setrika listrik), energi gerak (kipas angin) dan
sebagainya. Banyak sekali contoh dalam kehidupan kita, dirimu bisa
memikirkan contoh lainnya. Secara umum, energi bermanfaat bagi kita
ketika energi mengalami perubahan bentuk, misalnya energi listrik
berubah menjadi energi gerak (kipas angin), atau energi kimia berubah
menjadi energi gerak (mesin kendaraan).
Pada kesempatan ini kita akan
mempelajari dua jenis energi yang sebenarnya selalu kita jumpai dalam
kehidupan sehari-hari, yakni energi potensial
dan energi kinetik translasi. Energi potensial dapat berubah bentuk
menjadi energi kinetik ketika benda bergerak lurus dan sebaliknya
energi kinetik juga bisa berubah bentuk menjadi energi potensial. Total
kedua energi ini disebut energi mekanik, yang besarnya tetap alias
kekal. Mari kita pelajari kedua jenis energi ini secara lebih mendalam…
Momentum dan Impuls
Wednesday Nov 5,2008 09:33 PM
By san
In Impuls dan Momentum
Pengantar
Pernahkah dirimu menyaksikan tabrakan antara dua kendaraan di jalan ? kalo belum, silahkan mencoba sstt… jangan diikuti. Berbahaya bagi kesehatan jiwa dan raga-mu apa yang terjadi ketika dua kendaraan bertabrakan ? mungkin pengendara atau penumpangnya babak belur dan langsung digiring ke rumah sakit. Kondisi mobil atau sepeda motor mungkin hancur berantakan… Kalau kita tinjau dari ilmu fisika, fatal atau tidaknya tabrakan antara kedua kendaraan ditentukan oleh momentum kendaraan tersebut. masa sich ? serius… terus momentum tu apa ? sebelum berkenalan dengan momentum, pahami penjelasan gurumuda berikut ini terlebih dahulu.
Dalam ilmu fisika terdapat dua jenis momentum yakni momentum linear dan momentum sudut. Kadang-kadang momentum linear disingkat momentum. Dirimu jangan bingun ketika membaca buku pelajaran fisika yang hanya menulis “momentum”. Yang dimaksudkan buku itu adalah momentum linear. Seperti pada gerak lurus, kita seringkali hanya menyebut kecepatan linear dengan “kecepatan”. Tetapi yang kita maksudkan sebenarnya adalah “kecepatan linear”. Momentum linear merupakan momentum yang dimiliki benda-benda yang bergerak pada lintasan lurus, sedangkan momentum sudut dimiliki benda-benda yang bergerak pada lintasan melingkar. Btw, pengertian momentum tu apa ? terus apa hubungannya dengan tabrakan alias tumbukan dan impuls ? nah, sekarang tarik napas panjang sepuas2nya…. Seperti biasa, kita akan bergulat lagi dengan ilmu fisika. Kali ini kita bertarung dengan momentum, tumbukan dan impuls. Santai saja… gurumuda akan berusaha menjelaskan dengan bahasa yang sederhana sehingga dirimu cepat paham. Selamat belajar ya, semoga dahimu tidak berkerut2…
Momentum itu apa sich ?
Ssttt… momentum yang kita maksudkan di sini adalah momentum linear… jangan lUpA yA ?. Dalam fisika, momentum suatu benda didefinisikan sebagai hasil kali massa benda dengan kecepatan gerak benda tersebut. Secara matematis ditulis :
p = mv
p adalah lambang momentum, m adalah massa benda dan v adalah kecepatan benda. Momentum merupakan besaran vektor, jadi selain mempunyai besar alias nilai, momentum juga mempunyai arah. Besar momentum p = mv. Terus arah momentum bagaimana-kah ? arah momentum sama dengan arah kecepatan. Misalnya sebuah mobil bergerak ke timur, maka arah momentum adalah timur, tapi kalau mobilnya bergerak ke selatan maka arah momentum adalah selatan. Bagaimana dengan satuan momentum ? karena p = mv, di mana satuan m = kg dan satuan v = m/s, maka satuan momentum adalah kg m/s. Nama lain dari kg m/s adalah gurumuda. He2…. Cuma canda. Tidak ada nama khusus untuk satuan momentum.
Dari persamaan di atas, tampak bahwa momentum (p) berbanding lurus dengan massa (m) dan kecepatan (v). Semakin besar kecepatan benda, maka semakin besar juga momentum sebuah benda. Demikian juga, semakin besar massa sebuah benda, maka momentum benda tersebut juga bertambah besar. Perlu anda ingat bahwa momentum adalah hasil kali antara massa dan kecepatan. Jadi walaupun seorang berbadan gendut, momentum orang tersebut = 0 apabila dia diam alias tidak bergerak. Jadi momentum suatu benda selalu dihubungkan dengan massa dan kecepatan benda tersebut. kita tidak bisa meninjau momentum suatu benda hanya berdasarkan massa atau kecepatannya saja.
Contohnya begini, sebut saja mobil gurumuda dan mobil gurutua. Apabila kedua mobil ini bermassa sama tetapi mobil gurumuda bergerak lebih kencang (v lebih besar) daripada mobil gurutua, maka momentum mobil gurumuda lebih besar dibandingkan dengan momentum mobil gurutua. Contoh lain, misalnya mobil gurumuda memiliki massa besar, sedangkan mobil gurutua bermassa kecil. Apabila kedua mobil ini kebut2an di jalan dengan kecepatan yang sama, maka tentu saja momentum mobil gurumuda lebih besar dibandingkan dengan momentum mobil gurutua. Sampai di sini dirimu paham khaen ? kalo belum, dibaca kembali perlahan-lahan ya…. masa dirimu kalah bertarung dengan momentum
Hubungan Momentum dan tumbukan tu gimana ?
Pada pembahasan di atas, gurumuda sudah menjelaskan panjang lebar kepada dirimu mengenai pengertian momentum dalam ilmu fisika. Nah, kali ini kita akan melihat hubungan antara momentum dengan tumbukan. Pernahkah dirimu menyaksikan tabrakan antara dua kendaraan beroda di jalan ? apa yang dirimu amati ? yang pasti penumpangnya babak belur dan digiring ke rumah sakit dalam tempo yang sesingkat2nya… tapi maksud gurumuda, bagaimana kondisi kendaraan tersebut ? kendaraan tersebut mungkin hancur lebur dan mungkin langsung digiring ke bengkel khan ? paling singgah bentar di kantor polisi
Sekarang coba dirimu bandingkan, bagaimana akibat yang ditimbulkan dari tabrakan antara dua sepeda motor dan tabrakan antara sepeda motor dengan mobil ? anggap saja kendaraan tersebut bergerak dengan laju sama. Tentu saja tabrakan antara sepeda motor dan mobil lebih fatal akibatnya dibandingkan dengan tabrakan antara dua sepeda motor. Kalo ga percaya silahkan buktikan Massa mobil jauh lebih besar dari massa sepeda motor, sehingga ketika mobil bergerak, momentum mobil tersebut lebih besar dibandingkan dengan momentum sepeda motor. Ketika mobil dan sepeda motor bertabrakan alias bertumbukan, maka pasti sepeda motor yang terpental. Bisa anda bayangkan, apa yang terjadi jika mobil bergerak sangat kencang (v sangat besar) ?
Kita bisa mengatakan bahwa makin besar momentum yang dimiliki oleh sebuah benda, semakin besar efek yang timbulkan ketika benda tersebut bertumbukkan. Kalo dirimu kurus, coba aja bertabrakan dengan temanmu yang gendut… sebaiknya jangan dicoba, karena pasti ntar dirimu yang terpental dan meringis kesakitan…
Sebelum kita melihat hubungan antara momentum dan impuls, terlebih dahulu kita pahami hukum II Newton dalam bentuk momentum.
Hukum II Newton
Lho, kok tiba2 eyang Newton muncul ?
Pada pokok bahasan Hukum II Newton, kita telah belajar bahwa jika ada gaya total yang bekerja pada benda maka benda tersebut akan mengalami percepatan, di mana arah percepatan benda sama dengan arah gaya total. Jika dirimu masih bingun dengan Hukum II warisan eyang Newton, sebaiknya segera meluncur ke TKP dan pelajari dulu. Nah, apa hubungan antara hukum II Newton dengan momentum ? yang benar, bukan hubungan antara Hukum II Newton dengan momentum tetapi hubungan antara gaya total dengan momentum. Sekarang pahami penjelasan gurumuda berikut ini.
Misalnya ketika sebuah mobil bergerak di jalan dengan kecepatan tertentu, mobil tersebut memiliki momentum. Nah, untuk mengurangi kecepatan mobil pasti dibutuhkan gaya (dalam hal ini gaya gesekan antara kampas dan ban ketika mobil direm). Ketika kecepatan mobil berkurang (v makin kecil), momentum mobil juga berkurang. Demikian juga sebaliknya, sebuah mobil yang sedang diam akan bergerak jika ada gaya total yang bekerja pada mobil tersebut (dalam hal ini gaya dorong yang dihasilkan oleh mesin). Ketika mobil masih diam, momentum mobil = 0. pada saat mobil mulai bergerak dengan kecepatan tertentu, mobil tersebut memiliki momentum. Jadi kita bisa mengatakan bahwa perubahan momentum mobil disebabkan oleh gaya total. Dengan kata lain, laju perubahan momentum suatu benda sama dengan gaya total yang bekerja pada benda tersebut. Ini adalah hukum II Newton dalam bentuk momentum. Eyang newton pada mulanya menyatakan hukum II newton dalam bentuk momentum. Hanya eyang menyebut hasil kali mv sebagai “kuantitas gerak”, bukan momentum.
Secara matematis, versi momentum dari Hukum II Newton dapat dinyatakan dengan persamaan :
< ![endif]-->
Catatan = lambang momentum adalah p kecil, bukan P besar. Kalau P besar itu lambang daya. p dicetak tebal karena momentum adalah besaran vektor.
Dari persamaan ini, kita bisa menurunkan persamaan Hukum II Newton “yang sebenarnya” untuk kasus massa benda konstan alias tetap.
Sekarang kita tulis kembali persamaan di atas :
< ![endif]-->
Gampang khan ? ini adalah persamaan Hukum II eyang Newton untuk kasus massa benda tetap, yang sudah kita pelajari pada pokok bahasan Hukum II Newton. Gurumuda menyebutnya di atas sebagai Hukum II Newton “yang sebenarnya”.
Terus apa bedanya penggunaan hukum II Newton “yang sebenarnya” dengan hukum II Newton versi momentum ? Hukum II Newton versi momentum di atas lebih bersifat umum, sedangkan Hukum II Newton “yang sebenarnya” hanya bisa digunakan untuk kasus massa benda tetap. Jadi ketika menganalisis hubungan antara gaya dan gerak benda, di mana massa benda konstan, kita bisa menggunakan Hukum II Newton “yang sebenarnya”, tapi tidak menutup kemungkinan untuk menggunakan Hukum II Newton versi momentum. Ketika kita meninjau benda yang massa-nya tidak tetap alias berubah, kita tidak bisa menggunakan Hukum II Newton “yang sebenarnya” (F = ma). Kita hanya bisa menggunakan Hukum II Newton versi momentum. Contohnya roket yang meluncur ke ruang angkasa. Massa roket akan berkurang ketika bahan bakarnya berkurang atau habis. Paham khan ?
Nah, sekarang mari kita jalan-jalan menuju Impuls…
Hubungan antara Momentum dan Impuls
Pernahkah dirimu dipukul teman anda ? kok ngajak berantem sih… coba lakukan percobaan impuls dan momentum berikut… pukul tangan seorang temanmu menggunakan jari anda. Tapi jangan yang keras ya… gurumuda tidak mengajarkan dirimu untuk melakukan kekerasan. Gunakan ujung jari anda. Coba tanyakan kepada temanmu, mana yang lebih terasa sakit; ketika dipukul dengan cepat (waktu kontak antara jari pemukul dan tangan yang dipukul sangat singkat) atau ketika dipukul lebih lambat (waktu kontak antara jari pemukul dan tangan yang dipukul lebih lambat). Kalau dilakukan dengan benar (besar gaya sama), biasanya yang lebih sakit adalah ketika tanganmu dipukul dengan cepat. Ketika dirimu memukul tangan temanmu, tangan dirimu dan tangan temanmu saling bersentuhan, dalam hal ini saling bertumbukan.
Ketika terjadi tumbukan, gaya meningkat dari nol pada saat terjadi kontak dan menjadi nilai yang sangat besar dalam waktu yang sangat singkat. Setelah turun secara drastis menjadi nol kembali. Ini yang membuat tangan terasa lebih sakit ketika dipukul sangat cepat (waktu kontak antara jari pemukul dan tangan yang dipukul sangat singkat).
Hukum II Newton versi momentum yang telah kita turunkan di atas menyatakan bahwa laju perubahan momentum suatu benda sama dengan gaya total yang bekerja pada benda tersebut. Besar gaya yang bekerja pada benda yang bertumbukan dinyatakan dengan persamaan :
< ![endif]-->
Ingat bahwa impuls diartikan sebagai gaya yang bekerja pada benda dalam waktu yang sangat singkat. Konsep impuls membantu kita ketika meninjau gaya-gaya yang bekerja pada benda dalam selang waktu yang sangat singkat. Misalnya ketika ronaldinho menendang bola sepak, atau ketika tanganmu dipukul dengan cepat.
Penerapan Konsep Impuls dalam kehidupan sehari-hari
Pada penjelasan di atas sudah dijelaskan bahwa impuls merupakan gaya yang bekerja pada benda dalam waktu yang sangat singkat. Konsep ini sebenarnya sering kita alami dalam kehidupan sehari-hari. Ketika pada tubuh kita dikerjakan gaya impuls dalam waktu yang sangat singkat maka akan timbul rasa sakit. Semakin cepat gaya impuls bekerja, bagian tubuh kita yang dikenai gaya impuls dalam waktu sangat singkat tersebut akan terasa lebih sakit. Karenanya, penerapan konsep impuls ditujukan untuk memperlama selang waktu bekerjanya impuls, sehingga gaya impuls yang bekerja menjadi lebih kecil. Apabila selang waktu bekerjanya gaya impuls makin lama, maka rasa sakit menjadi berkurang, bahkan tidak dirasakan.
Beberapa contoh penerapan konsep impuls dalam kehidupan sehari-hari adalah sebagai berikut :
1. Sarung Tinju
Pernah nonton pertandingan Tinju di TV ? nah, sarung tinju yang dipakai oleh para petinju itu berfungsi untuk memperlama bekerjanya gaya impuls. ketika petinju memukul lawannya, pukulannya tersebut memiliki waktu kontak yang lebih lama. Karena waktu kontak lebih lama, maka gaya impuls yang bekerja juga makin kecil. Makin kecil gaya impuls yang bekerja maka rasa sakit menjadi berkurang… ya, lumayan… untuk memperpanjang hidup para petinju
2. Palu alias pemukul
Mengapa palu tidak dibuat dari kayu saja, kok malah dipakai besi atau baja ? tujuannya supaya selang waktu kontak menjadi lebih singkat, sehingga gaya impuls yang dihasilkan lebih besar. Kalau gaya impulsnya besar maka paku, misalnya, akan tertanam lebih dalam
3. Matras
Matras sering dipakai ketika dirimu olahraga atau biasa dipakai para pejudo. Matras dimanfaatkan untuk memperlama selang waktu bekerjanya gaya impuls, sehingga tubuh kita tidak terasa sakit ketika dibanting. Bayangkanlah ketika dirimu dibanting atau berbenturan dengan lantai… sakit khan ? hal itu disebabkan karena waktu kontak antara tubuhmu dan lantai sangat singkat. Tapi ketika dirimu dibanting di atas matras maka waktu kontaknya lebih lama, dengan demikian gaya impuls yang bekerja juga menjadi lebih kecil.
4. Helm
Kalau anda perhatikan bagian dalam helm, pasti anda akan melihat lapisan lunak. Kaya gabus atau spons… lapisan lunak tersebut bertujuan untuk memperlama waktu kontak seandainya kepala anda terbentur ke aspal ketika terjadi tabrakan. Jika tidak ada lapisan lunak tersebut, gaya impuls akan bekerja lebih cepat sehingga walaupun memakai helm, anda akan pusing-pusing ketika terbentur aspal
JENIS-JENIS TUMBUKAN
Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa), maka benda itu pasti memiliki momentum (p = mv) dan juga Energi Kinetik (EK = ½ mv2).
Nah, pada kesempatan ini kita akan mempelajari jenis-jenis tumbukan antara dua benda dan mencoba melihat hubungannya dengan Kekekalan Momentum dan Kekekalan Energi Kinetik. Napa yang ditinjau kekekalan momentum dan kekekalan energi kinetik-nya ? bukannya Cuma momentum dan energi kinetik ? yupz… maksudnya begini, ketika benda bergerak saling mendekati sebelum tumbukan, kedua benda itu memiliki Momentum dan Energi Kinetik. Yang menjadi persoalan, bagaimana dengan Momentum dan Energi Kinetik kedua benda tersebut setelah bertumbukan ? apakah momentum dan energi kinetik kedua benda ketika sebelum tumbukan = momentum dan energi kinetik benda setelah tumbukan ? agar dirimu semakin memahaminya, mari kita bahas jenis-jenis tumbukan satu persatu dan meninjau kekekalan momentum dan kekekalan energi kinetik pada kedua benda yang bertumbukan.
Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.
TUMBUKAN LENTING SEMPURNA
Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.
Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Untuk memahami konsep ini, coba jawab pertanyaan gurumuda berikut ini. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.
Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.
Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…
Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.
< ![endif]-->
Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.
Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :
< ![endif]-->
Keterangan :
m1 = massa benda 1, m2 = massa benda 2
v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan
v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum,
m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan
m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan
Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :
< ![endif]-->
Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas. Persamaan apakah itu ? nah, mari kita turunkan persamaan tersebut… dipahami perlahan-lahan ya
Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :
< ![endif]-->
Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :
< ![endif]-->
< ![endif]-->
Kita tulis kembali persamaan ini menjadi :
< ![endif]-->
Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.
Koofisien elastisitas Tumbukan Lenting Sempurna
Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…
Kita tulis lagi persamaan 3 :
< ![endif]-->
Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :
< ![endif]-->
e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan
TUMBUKAN LENTING SEBAGIAN
Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?
Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.
Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.
Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :
< ![endif]-->
Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.
TUMBUKAN TIDAK LENTING SAMA SEKALI
Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…
< ![endif]-->
Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?
Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :
m1v1 + m2v2 = m1v’1 + m2v’2
m1v1 + m2(0) = (m1 + m2) v’
m1v1 = (m1 + m2) v’ < ![endif]-->—- persamaan 1
Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya)
mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru,
yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke
posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum
Kekekalan Momentum tidak berlaku setelah balok bergerak.
Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?
Nah, masih ingatkah dirimu pada Hukum
Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan
peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik.
Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit
energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok
dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik
berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada
ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum,
sedangkan EK = 0.
Kita turunkan persamaannya ya
Catatan :
Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.
Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.
EM1 = EM2
EP1 + EK1 = EP2 + EK2
0 + EK1 = EP2 + 0
½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2
Perlu anda ketahui bahwa biasanya dua benda yang bertumbukan bergerak mendekat satu dengan yang lain dan setelah bertumbukan keduanya bergerak saling menjauhi. Ketika benda bergerak, maka tentu saja benda memiliki kecepatan. Karena benda tersebut mempunyai kecepatan (dan massa), maka benda itu pasti memiliki momentum (p = mv) dan juga Energi Kinetik (EK = ½ mv2).
Nah, pada kesempatan ini kita akan mempelajari jenis-jenis tumbukan antara dua benda dan mencoba melihat hubungannya dengan Kekekalan Momentum dan Kekekalan Energi Kinetik. Napa yang ditinjau kekekalan momentum dan kekekalan energi kinetik-nya ? bukannya Cuma momentum dan energi kinetik ? yupz… maksudnya begini, ketika benda bergerak saling mendekati sebelum tumbukan, kedua benda itu memiliki Momentum dan Energi Kinetik. Yang menjadi persoalan, bagaimana dengan Momentum dan Energi Kinetik kedua benda tersebut setelah bertumbukan ? apakah momentum dan energi kinetik kedua benda ketika sebelum tumbukan = momentum dan energi kinetik benda setelah tumbukan ? agar dirimu semakin memahaminya, mari kita bahas jenis-jenis tumbukan satu persatu dan meninjau kekekalan momentum dan kekekalan energi kinetik pada kedua benda yang bertumbukan.
Secara umum terdapat beberapa jenis tumbukan, antara lain Tumbukan lenting sempurna, Tumbukan lenting sebagian dan Tumbukan tidak lenting sama sekali.
TUMBUKAN LENTING SEMPURNA
Tumbukan lenting sempurna tu maksudnya bagaimanakah ? Dua benda dikatakan melakukan Tumbukan lenting sempurna jika Momentum dan Energi Kinetik kedua benda sebelum tumbukan = momentum dan energi kinetik setelah tumbukan. Dengan kata lain, pada tumbukan lenting sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik.
Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik berlaku pada peristiwa tumbukan lenting sempurna karena total massa dan kecepatan kedua benda sama, baik sebelum maupun setelah tumbukan. Hukum Kekekalan Energi Kinetik berlaku pada Tumbukan lenting sempurna karena selama tumbukan tidak ada energi yang hilang. Untuk memahami konsep ini, coba jawab pertanyaan gurumuda berikut ini. Ketika dua bola billiard atau dua kelereng bertumbukan, apakah anda mendengar bunyi yang diakibatkan oleh tumbukan itu ? atau ketika mobil atau sepeda motor bertabrakan, apakah ada bunyi yang dihasilkan ? pasti ada bunyi dan juga panas yang muncul akibat benturan antara dua benda. Bunyi dan panas ini termasuk energi. Jadi ketika dua benda bertumbukan dan menghasilkan bunyi dan panas, maka ada energi yang hilang selama proses tumbukan tersebut. Sebagian Energi Kinetik berubah menjadi energi panas dan energi bunyi. Dengan kata lain, total energi kinetik sebelum tumbukan tidak sama dengan total energi kinetik setelah tumbukan.
Nah, benda-benda yang mengalami Tumbukan Lenting Sempurna tidak menghasilkan bunyi, panas atau bentuk energi lain ketika terjadi tumbukan. Tidak ada Energi Kinetik yang hilang selama proses tumbukan. Dengan demikian, kita bisa mengatakan bahwa pada peritiwa Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Energi Kinetik.
Apakah tumbukan lenting sempurna dapat kita temui dalam kehidupan sehari-hari ? Tidak…. Tumbukan lenting sempurna merupakan sesuatu yang sulit kita temukan dalam kehidupan sehari-hari. Paling tidak ada ada sedikit energi panas dan bunyi yang dihasilkan ketika terjadi tumbukan. Salah satu contoh tumbukan yang mendekati lenting sempurna adalah tumbukan antara dua bola elastis, seperti bola billiard. Untuk kasus tumbukan bola billiard, memang energi kinetik tidak kekal tapi energi total selalu kekal. Lalu apa contoh Tumbukan lenting sempurna ? contoh jenis tumbukan ini tidak bisa kita lihat dengan mata telanjang karena terjadi pada tingkat atom, yakni tumbukan antara atom-atom dan molekul-molekul. Istirahat dulu ah…
Sekarang mari kita tinjau persamaan Hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik pada perisitiwa Tumbukan Lenting Sempurna. Untuk memudahkan pemahaman dirimu, perhatikan gambar di bawah.
< ![endif]-->
Dua benda, benda 1 dan benda 2 bergerak saling mendekat. Benda 1 bergerak dengan kecepatan v1 dan benda 2 bergerak dengan kecepatan v2. Kedua benda itu bertumbukan dan terpantul dalam arah yang berlawanan. Perhatikan bahwa kecepatan merupakan besaran vektor sehingga dipengaruhi juga oleh arah. Sesuai dengan kesepakatan, arah ke kanan bertanda positif dan arah ke kiri bertanda negatif. Karena memiliki massa dan kecepatan, maka kedua benda memiliki momentum (p = mv) dan energi kinetik (EK = ½ mv2). Total Momentum dan Energi Kinetik kedua benda sama, baik sebelum tumbukan maupun setelah tumbukan.
Secara matematis, Hukum Kekekalan Momentum dirumuskan sebagai berikut :
< ![endif]-->
Keterangan :
m1 = massa benda 1, m2 = massa benda 2
v1 = kecepatan benda sebelum tumbukan dan v2 = kecepatan benda 2 Sebelum tumbukan
v’1 = kecepatan benda Setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum,
m1v1 = momentum benda 1 sebelum tumbukan, m1v’1 = momentum benda 1 setelah tumbukan
m2v2 = momentum benda 2 sebelum tumbukan, m2v’2 = momentum benda 2 setelah tumbukan
Pada Tumbukan Lenting Sempurna berlaku juga Hukum Kekekalan Energi Kinetik. Secara matematis dirumuskan sebagai berikut :
< ![endif]-->
Kita telah menurunkan 2 persamaan untuk Tumbukan Lenting Sempurna, yakni persamaan Hukum Kekekalan Momentum dan Persamaan Hukum Kekekalan Energi Kinetik. Ada suatu hal yang menarik, bahwa apabila hanya diketahui massa dan kecepatan awal, maka kecepatan setelah tumbukan bisa kita tentukan menggunakan suatu persamaan lain. Persamaan ini diturunkan dari dua persamaan di atas. Persamaan apakah itu ? nah, mari kita turunkan persamaan tersebut… dipahami perlahan-lahan ya
Sekarang kita tulis kembali persamaan Hukum Kekekalan Momentum :
< ![endif]-->
Kita tulis kembali persamaan Hukum Kekekalan Energi Kinetik :
< ![endif]-->
< ![endif]-->
Kita tulis kembali persamaan ini menjadi :
< ![endif]-->
Ini merupakan salah satu persamaan penting dalam Tumbukan Lenting sempurna, selain persamaan Kekekalan Momentum dan persamaan Kekekalan Energi Kinetik. Persamaan 3 menyatakan bahwa pada Tumbukan Lenting Sempurna, laju kedua benda sebelum dan setelah tumbukan sama besar tetapi berlawanan arah, berapapun massa benda tersebut.
Koofisien elastisitas Tumbukan Lenting Sempurna
Wah, istilah baru lagi ne… apaan sie koofisien elastisitas ? sebelum gurumuda menjelaskan apa itu koofisien elastisitas, mari kita obok2 lagi rumus fisika. Kali ini giliran persamaan 3…
Kita tulis lagi persamaan 3 :
< ![endif]-->
Perbandingan negatif antara selisih kecepatan benda setelah tumbukan dengan selisih kecepatan benda sebelum tumbukan disebut sebagai koofisien elatisitas alias faktor kepegasan (dalam buku Karangan Bapak Marthen Kanginan disebut koofisien restitusi). Untuk Tumbukan Lenting Sempurna, besar koofisien elastisitas = 1. ini menunjukkan bahwa total kecepatan benda setelah tumbukan = total kecepatan benda sebelum tumbukan. Lambang koofisien elastisitas adalah e. Secara umum, nilai koofisien elastisitas dinyatakan dengan persamaan :
< ![endif]-->
e = koofisien elastisitas = koofisien restitusi, faktor kepegasan, angka kekenyalan, faktor keelastisitasan
TUMBUKAN LENTING SEBAGIAN
Pada pembahasan sebelumnya, kita telah belajar bahwa pada Tumbukan Lenting Sempurna berlaku Hukum Kekekalan Momentum dan Hukum Kekekakalan Energi Kinetik. Nah, bagaimana dengan tumbukan lenting sebagian ?
Pada tumbukan lenting sebagian, Hukum Kekekalan Energi Kinetik tidak berlaku karena ada perubahan energi kinetik terjadi ketika pada saat tumbukan. Perubahan energi kinetik bisa berarti terjadi pengurangan Energi Kinetik atau penambahan energi kinetik. Pengurangan energi kinetik terjadi ketika sebagian energi kinetik awal diubah menjadi energi lain, seperti energi panas, energi bunyi dan energi potensial. Hal ini yang membuat total energi kinetik akhir lebih kecil dari total energi kinetik awal. Kebanyakan tumbukan yang kita temui dalam kehidupan sehari-hari termasuk dalam jenis ini, di mana total energi kinetik akhir lebih kecil dari total energi kinetik awal. Tumbukan antara kelereng, tabrakan antara dua kendaraan, bola yang dipantulkan ke lantai dan lenting ke udara, dll.
Sebaliknya, energi kinetik akhir total juga bisa bertambah setelah terjadi tumbukan. Hal ini terjadi ketika energi potensial (misalnya energi kimia atau nuklir) dilepaskan. Contoh untuk kasus ini adalah peristiwa ledakan.
Suatu tumbukan lenting sebagian biasanya memiliki koofisien elastisitas (e) berkisar antara 0 sampai 1. Secara matematis dapat ditulis sebagai berikut :
< ![endif]-->
Bagaimana dengan Hukum Kekekalan Momentum ? Hukum Kekekalan Momentum tetap berlaku pada peristiwa tumbukan lenting sebagian, dengan anggapan bahwa tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan.
TUMBUKAN TIDAK LENTING SAMA SEKALI
Bagaimana dengan tumbukan tidak lenting sama sekali ? suatu tumbukan dikatakan Tumbukan Tidak Lenting sama sekali apabila dua benda yang bertumbukan bersatu alias saling menempel setelah tumbukan. Salah satu contoh populer dari tumbukan tidak lenting sama sekali adalah pendulum balistik. Pendulum balistik merupakan sebuah alat yang sering digunakan untuk mengukur laju proyektil, seperti peluru. Sebuah balok besar yang terbuat dari kayu atau bahan lainnya digantung seperti pendulum. Setelah itu, sebutir peluru ditembakkan pada balok tersebut dan biasanya peluru tertanam dalam balok. Sebagai akibat dari tumbukan tersebut, peluru dan balok bersama-sama terayun ke atas sampai ketinggian tertentu (ketinggian maksimum). Lihat gambar di bawah…
< ![endif]-->
Apakah pada Tumbukan Tidak Lenting Sama sekali berlaku hukum Kekekalan Momentum dan Hukum Kekekalan Energi Kinetik ?
Perhatikan gambar di atas. Hukum kekekalan momentum hanya berlaku pada waktu yang sangat singkat ketika peluru dan balok bertumbukan, karena pada saat itu belum ada gaya luar yang bekerja. Secara matematis dirumuskan sebagai berikut :
m1v1 + m2v2 = m1v’1 + m2v’2
m1v1 + m2(0) = (m1 + m2) v’
m1v1 = (m1 + m2) v’ < ![endif]-->—- persamaan 1
Apakah setelah balok mulai bergerak masih berlaku hukum Kekekalan Momentum ? Tidak…. Mengapa tidak ? ketika balok (dan peluru yang tertanam di dalamnya)
mulai bergerak, akan ada gaya luar yang bekerja pada balok dan peluru,
yakni gaya gravitasi. Gaya gravitasi cenderung menarik balok kembali ke
posisi setimbang. Karena ada gaya luar total yang bekerja, maka hukum
Kekekalan Momentum tidak berlaku setelah balok bergerak.
Lalu bagaimana kita menganalisis gerakan balok dan peluru setelah tumbukan ?
Nah, masih ingatkah dirimu pada Hukum
Kekekalan Energi Mekanik ? kita dapat menganalisis gerakan balok dan
peluru setelah tumbukan menggunakan hukum Kekekalan Energi Mekanik.
Ketika balok mulai bergerak setelah tumbukan, sedikit demi sedikit
energi kinetik berubah menjadi energi potensial gravitasi. Ketika balok
dan peluru mencapai ketinggian maksimum (h), seluruh Energi Kinetik
berubah menjadi Energi Potensial gravitasi. Dengan kata lain, pada
ketinggian maksimum (h), Energi Potensial gravitasi bernilai maksimum,
sedangkan EK = 0.
Kita turunkan persamaannya ya
Catatan :
Ketika balok dan peluru tepat mulai bergerak dengan kecepatan v’, h1 = 0. Pada saat balok dan peluru berada pada ketinggian maksimum, h2 = h dan v2 = 0.
Persamaan Hukum Kekekalan Energi Mekanik untuk kasus tumbukan tidak lenting sama sekali.
EM1 = EM2
EP1 + EK1 = EP2 + EK2
0 + EK1 = EP2 + 0
½ (m1 + m2)v’2 = (m1 + m2) g h — persamaan 2
Hukum Kekekalan Momentum
Sunday Nov 9,2008 12:12 AM
By san
In Impuls dan Momentum
Pada pokok bahasan Momentum dan Impuls, kita telah berkenalan dengan konsep momentum serta pengaruh momentum benda pada peristiwa tumbukan. Pada kesempatan ini kita akan meninjau momentum benda ketika dua buah benda saling bertumbukan. Ingat ya, momentum merupakan hasil kali antara massa benda dengan kecepatan gerak benda tersebut. Jadi momentum suatu benda selalu dihubungkan dengan massa dan kecepatan benda. Kita tidak bisa meninjau momentum suatu benda hanya berdasarkan massa atau kecepatannya saja. Pahami baik-baik konsep ini ya….
Pernahkah anda menonton permainan biliard ? lebih baik lagi jika dirimu adalah pemain biliard tuh gambarnya di samping kiri… biasanya pada permainan billiard, kita berusaha untuk memasukan bola ke dalam lubang. Bola yang menjadi target biasanya diam. Jika anda perhatikan secara cermat, kecepatan bola biliard yang disodok menuju bola biliard target menjadi berkurang setelah kedua bola biliard bertumbukan. Sebaliknya, setelah bertumbukan, bola biliard yang pada mulanya diam menjadi bergerak. Berhubung massa bola biliard selalu tetap, maka yang mengalami perubahan adalah kecepatan. Karena bola billiard yang disodok mengalami pengurangan kecepatan setelah tumbukan, maka tentu saja momentumnya juga berkurang. Jika momentum bola billiard yang disodok berkurang, kemanakah momentumnya pergi ? bisa kita tebak, momentum yang hilang pada bola billiard yang disodok berpindah ke bola billiard target. Kok bisa ? ya iyalah bola billiard target kan pada mulanya diam, sehingga momentumnya pasti nol. Setelah bertumbukkan, bola billiard tersebut bergerak. Karena bergerak, maka tentu saja bola billiard target memiliki momentum. Jadi momentum bola billiard yang disodok tadi berpindah ke bola billiard target. Dengan demikian kita bisa mengatakan bahwa perubahan momentum pada kedua bola billiard setelah terjadi tumbukan disebabkan karena adanya “perpindahan momentum” dari satu bola billiard ke bola biliard lainnya.
Nah, sekarang pahami penjelasan gurumuda ini baik2 ya….. Pada saat sebelum tumbukan, bola billiard target diam sehingga momentumnya = 0, sedangkan bola billiard yang disodok bergerak dengan kecepatan tertentu; bola billiard yang disodok memiliki momentum. Setelah terjadi tumbukan, kecepatan bola billiard yang disodok berkurang; karenanya momentumnya juga berkurang. Sebaliknya, bola billiard target yang pada mulanya diam menjadi bergerak setelah terjadi tumbukan. Karena bergerak maka kita bisa mengatakan bahwa momentum bola billiard target “bertambah”. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua bola billiard tersebut sebelum tumbukan = jumlah momentum kedua bola billiard setelah tumbukan ?
Jika bingung, dibaca perlahan-lahan sambil dipahami ya…. bagi yang belum pernah melihat atau bermain bola billiard, anda pasti kebingungan dengan penjelasan di atas. Oleh karena itu, segera beli dua buah kelereng pada warung atau toko terdekat…. dan lakukan percobaan berikut. Letakkan sebuah kelereng pada permukaan lantai yang datar. Setelah itu, tembakkan kelereng yang diam tersebut menggunakan kelereng lainnya dari jarak tertentu. Jika meleset, ulangi sampai kedua kelereng bertumbukan. Amati secara saksama kecepatan gerak kelereng tersebut. Setelah kedua kelereng bertumbukan, kelereng yang pada mulanya diam (tidak memiliki momentum) pasti bergerak (memiliki momentum). Sebaliknya, kelereng yang anda kutik tadi pasti kecepatannya berkurang setelah tumbukan (momentumnya berkurang). Dengan demikian kita bisa mengatakan bahwa momentum kelereng yang dikutik berkurang karena sebagian momentumnya berpindah ke kelereng target yang pada mulanya diam. Dapatkah kita menyimpulkan bahwa jumlah momentum kedua kelereng sebelum tumbukan = jumlah momentum kedua kelereng setelah tumbukan ?
Alangkah baiknya jika dirimu melakukan percobaan menumbukkan dua bola (mirip bola billiard) di atas permukaan meja getar. Syukur kalau di laboratorium sekolah-mu ada meja getar. Pada percobaan menumbukan dua bola di atas permukaan meja getar, kita mengitung kecepatan kedua bola sebelum dan setelah tumbukan. Massa bola tetap, sehingga yang diselidiki adalah kecepatannya. Frekuensi getaran meja = frekuensi listrik PLN (50 Hertz). Karena telah diketahui frekuensi getaran meja, maka kita bisa menentukan periode getaran meja. Nah, waktunya sudah diketahui, sekarang tugas kita adalah mengukur panjang jejak bola ketika bergerak di atas meja getar. Karena meja bergetar setiap 0,02 detik (1/50), maka ketika bergerak di atas meja, bola pasti meninggalkan jejak di atas meja yang sudah kita lapisi dengan kertas karbon. Jarak antara satu jejak dengan jejak yang lain; yang ditinggalkan bola setiap 0,02 detik kita ukur. Setelah memperoleh data jarak tempuh bola, selanjutnya kita bisa menghitung kecepatan gerak kedua bola tersebut, baik sebelum tumbukan maupun setelah tumbukan. selanjutnya kita hitung momentum kedua bola sebelum tumbukan (p = mv) dan momentum kedua bola setelah tumbukan (p’ = mv’). Jika percobaan dilakukan dengan baik dan benar, maka kesimpulan yang kita peroleh adalah total momentum dua benda sebelum tumbukan = total momentum kedua benda tersebut setelah tumbukan.
Jika di laboratorium sekolah anda tidak ada meja getar, coba pahami ilustrasi bola biliard atau kelereng di atas secara saksama. Jika sudah paham, anda pasti setuju kalau gurumuda mengatakan bahwa jumlah momentum kedua benda sebelum tumbukan = jumlah momentum kedua benda setelah tumbukan. Pada ilustrasi di atas, sebelum tumbukan salah satu benda diam. Pada dasarnya sama saja bila dua benda sama-sama bergerak sebelum tumbukan. Kecepatan gerak kedua benda tersebut pasti berubah setelah tumbukan, sehingga momentum masing-masing benda juga mengalami perubahan. Kecuali jika massa dan kecepatan dua benda sama sebelum kedua benda tersebut saling bertumbukan. Biasanya total momentum kedua benda sebelum tumbukan = total momentum kedua benda setelah terjadi tumbukan.
Penjelasan panjang lebar dan bertele-tele di atas hanya mau mengantar dirimu untuk memahami inti pokok bahasan ini, yakni Hukum Kekekalan Momentum. Tidak peduli berapapun massa dan kecepatan benda yang saling bertumbukan, ternyata momentum total sebelum tumbukan = momentum total setelah tumbukan. Hal ini berlaku apabila tidak ada gaya luar alias gaya eksternal total yang bekerja pada benda yang bertumbukan. Jadi analisis kita hanya terbatas pada dua benda yang bertumbukan, tanpa ada pengaruh dari gaya luar. Sekarang perhatikan gambar di bawah ini.
< ![endif]-->
Jika dua benda yang bertumbukan diilustrasikan dengan gambar di atas, maka secara matematis, hukum kekekalan momentum dinyatakan dengan persamaan :
< ![endif]-->
Keterangan :
m1 = massa benda 1, m2 = massa benda 2, v1 = kecepatan benda 1 sebelum tumbukan, v2 = kecepatan benda 2 sebelum tumbukan, v’1 = kecepatan benda 1 setelah tumbukan, v’2 = kecepatan benda 2 setelah tumbukan
Jika dinyatakan dalam momentum, maka :
m1v1 = momentum benda 1 sebelum tumbukan, m2v2 = momentum benda 2 sebelum tumbukan, m1v‘1 = momentum benda 1 setelah tumbukan, m2v‘2 = momentum benda 2 setelah tumbukan
Perlu anda ketahui bahwa Hukum Kekekalan Momentum ditemukan melalui percobaan pada pertengahan abad ke-17, sebelum eyang Newton merumuskan hukumnya tentang gerak (mengenai Hukum II Newton versi momentum telah saya jelaskan pada pokok bahasan Momentum, Tumbukan dan Impuls). Walaupun demikian, kita dapat menurunkan persamaan Hukum Kekekalan Momentum dari persamaan hukum II Newton. Yang kita tinjau ini khusus untuk kasus tumbukan satu dimensi, seperti yang dilustrasikan pada gambar di atas.
Kita tulis kembali persamaan hukum II Newton :
< ![endif]-->
Ketika bola 1 dan bola 2 bertumbukan, bola 1 memberikan gaya pada bola 2 sebesar F21, di mana arah gaya tersebut ke kanan (perhatikan gambar di bawah)
< ![endif]-->
Momentum bola 2 dinyatakan dengan persamaan :
< ![endif]-->
Berdasarkan Hukum III Newton (Hukum aksi-reaksi), bola 2 memberikan gaya reaksi pada bola 1, di mana besar F12 = – F21. (Ingat ya, besar gaya reaksi = gaya aksi. Tanda negatif menunjukan bahwa arah gaya reaksi berlawanan dengan arah gaya aksi)
Momentum bola 1 dinyatakan dengan persamaan :
< ![endif]-->
< ![endif]-->
Ini adalah persamaan Hukum Kekekalan Momentum. Hukum Kekekalan Momentum berlaku jika gaya total pada benda-benda yang bertumbukan = 0. Pada penjelasan di atas, gaya total pada dua benda yang bertumbukan adalah F12 + (-F21) = 0. Jika nilai gaya total dimasukan dalam persamaan momentum :
< ![endif]-->
Hal ini menunjukkan bahwa apabila gaya total pada sistem = 0, maka momentum total tidak berubah. Yang dimaksudkan dengan sistem adalah benda-benda yang bertumbukan. Apabila pada sistem tersebut bekerja gaya luar (gaya-gaya yang diberikan oleh benda di luar sistem), sehingga gaya total tidak sama dengan nol, maka hukum kekekalan momentum tidak berlaku.
Dengan demikian, kita dapat menyimpulkan bahwa :
Jika tidak ada gaya luar yang bekerja pada benda-benda yang bertumbukan, maka jumlah momentum benda-benda
sebelum tumbukan sama dengan jumlah momentum benda-benda setelah tumbukan.
Ini adalah pernyataan hukum kekekalan momentum
Normal 0
Prinsip Kerja Roket
Dorongan
roket dan jet merupakan penerapan yang menarik dari hukum III Newton
dan Kekekalan momentum. Roket memiliki tangki yang berisi bahan bakar
hodrogen cair dan oksigen cair. Bahan bakar tersebut dibakar dalam
ruang pembakaran sehingga menghasilkan gas lalu dibuang melalui mulut
pipa yang terletak dibelakang roket. Akibatnya terjadi perubahan
momentum pada gas selama selang waktu tertentu. Berdasarkan hukum II
Newton, perubahan momentum selama suatu selang waktu tertentu = gaya
total. Jadi bisa dikatakan bahwa terdapat gaya total pada gas yang
disemburkan roket ke belakang. Gaya total tersebut merupakan gaya aksi
yang diberikan oleh roket kepada gas, di mana arahnya ke bawah. Sebagai
tanggapan, gas memberikan gaya reaksi kepada roket, di mana besar gaya
reaksi = gaya aksi, hanya arahnya berlawanan. Gaya reaksi yang
diberikan oleh gas tersebut yang mendorong roket ke atas.
Sangat membantu
BalasHapusSangat jelas penjelasannya
Terima kasih pak